Teeth gestures become an alternative input modality for different situations and accessibility purposes. In this paper, we present TeethTap, a novel eyes-free and hands-free input technique, which can recognize up to 13 discrete teeth tapping gestures. TeethTap adopts a wearable 3D printed earpiece with an IMU sensor and a contact microphone behind both ears, which works in tandem to detect jaw movement and sound data, respectively. TeethTap uses a support vector machine to classify gestures from noise by fusing acoustic and motion data, and implements K-Nearest-Neighbor (KNN) with a Dynamic Time Warping (DTW) distance measurement using motion data for gesture classification. A user study with 11 participants demonstrated that TeethTap could recognize 13 gestures with a real-time classification accuracy of 90.9% in a laboratory environment. We further uncovered the accuracy differences on different teeth gestures when having sensors on single vs. both sides. Moreover, we explored the activation gesture under real-world environments, including eating, speaking, walking and jumping. Based on our findings, we further discussed potential applications and practical challenges of integrating TeethTap into future devices.